Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We consider the vulnerability of fairness-constrained learning to malicious noise in the training data. Konstantinov and Lampert (2021) initiated the study of this question and proved that any proper learner can exhibit high vulnerability when group sizes are imbalanced. Here, we present a more optimistic view, showing that if we allow randomized classifiers, then the landscape is much more nuanced. For example, for Demographic Parity we need only incur a Θ(α) loss in accuracy, where α is the malicious noise rate, matching the best possible even without fairness constraints. For Equal Opportunity, we show we can incur an O(sqrt(α)) loss, and give a matching Ω(sqrt(α)) lower bound. For Equalized Odds and Predictive Parity, however, and adversary can indeed force an Ω(1) loss. The key technical novelty of our work is how randomization can bypass simple 'tricks' an adversary can use to amplify its power. These results provide a more fine-grained view of the sensitivity of fairness-constrained learning to adversarial noise in training data.more » « less
-
We introduce and study the problem of dueling optimization with a monotone adversary, a generalization of (noiseless) dueling convex optimization. The goal is to design an online algorithm to find a minimizer x* for a function f:X→R, for X \subseteq R^d. In each round, the algorithm submits a pair of guesses x1 and x2, and the adversary responds with any point in the space that is at least as good as both guesses. The cost of each query is the suboptimality of the worst of the two guesses; i.e., max(f(x1) − f(x*),f(x2) − f(x*)). The goal is to minimize the number of iterations required to find an ε-optimal point and to minimize the total cost (regret) of the guesses over many rounds. Our main result is an efficient randomized algorithm for several natural choices of the function f and set X that incurs cost O(d) and iteration complexity O(d log(1/ε)^2). Moreover, our dependence on d is asymptotically optimal, as we show examples in which any randomized algorithm for this problem must incur Ω(d) cost and iteration complexity.more » « less
-
In this work, we propose a multi-objective decision making framework that accommodates different user preferences over objectives, where preferences are learned via policy comparisons. Our model consists of a known Markov decision process with a vector-valued reward function, with each user having an unknown preference vector that expresses the relative importance of each objective. The goal is to efficiently compute a near-optimal policy for a given user. We consider two user feedback models. We first address the case where a user is provided with two policies and returns their preferred policy as feedback. We then move to a different user feedback model, where a user is instead provided with two small weighted sets of representative trajectories and selects the preferred one. In both cases, we suggest an algorithm that finds a nearly optimal policy for the user using a number of comparison queries that scales quasilinearly in the number of objectives.more » « less
An official website of the United States government

Full Text Available